ARS scientists, Martha Anderson and Bill Kustas, are
hoping that in a year or so, data from their computer model/satellite
package will give evapotranspiration (ET) maps a seat at that briefing.
With funding from NOAA and the National Aeronautics and Space Administration (NASA), they have developed a modelling system that NOAA will use to generate ET estimates over the continental United States. NOAA will evaluate these ET products to see how well they work for operational hydrologic and meteorological modeling. One application of the remotely sensed ET maps will be to monitor drought over the United States from a satellite’s perspective.
Anderson is a physical scientist and Kustas is a hydrologist; both are at the ARS Hydrology and Remote Sensing Laboratory in Beltsville, Maryland.
With funding from NOAA and the National Aeronautics and Space Administration (NASA), they have developed a modelling system that NOAA will use to generate ET estimates over the continental United States. NOAA will evaluate these ET products to see how well they work for operational hydrologic and meteorological modeling. One application of the remotely sensed ET maps will be to monitor drought over the United States from a satellite’s perspective.
Anderson is a physical scientist and Kustas is a hydrologist; both are at the ARS Hydrology and Remote Sensing Laboratory in Beltsville, Maryland.
Next year, North America; someday, the world
Anderson and Kustas, along with NOAA colleagues Chris
Hain and Xiwu Zhan, are also mapping ET over the entire globe at a
coarser spatial resolution, working towards a day when the maps can be
used worldwide for drought monitoring. The group has developed a web
site showing their drought-monitoring maps; the site will soon go public
and be linked to the US Drought Portal [click here].
The work has advanced enough that the team wants to expand its drought monitoring to Mexico, Canada, and Central and South America. They are mapping parts of Africa – including the Horn of Africa region, where drought has caused famine in Somalia – with data from European Union meteorological satellites.
Anderson recently attended a conference in Ethiopia on soil moisture and drought monitoring to help subsistence farmers cope with increased weather variability. Scientists, Ethiopian government officials and disaster–aid groups participated in the conference and showed great interest in the new water-use and drought-early-warning information that can be provided by satellite systems.
The work has advanced enough that the team wants to expand its drought monitoring to Mexico, Canada, and Central and South America. They are mapping parts of Africa – including the Horn of Africa region, where drought has caused famine in Somalia – with data from European Union meteorological satellites.
Anderson recently attended a conference in Ethiopia on soil moisture and drought monitoring to help subsistence farmers cope with increased weather variability. Scientists, Ethiopian government officials and disaster–aid groups participated in the conference and showed great interest in the new water-use and drought-early-warning information that can be provided by satellite systems.
No comments:
Post a Comment